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Abstract

The effect of small-amplitude short-scale variations in surface admittance on the acoustic recep-

tivity and stability of two-dimensional compressible boundary layers is examined. In the linearized

limit, the two problems are shown to be related both physically and mathematically. This connection

between the two problems is used, in conjunction with some previously reported receptivity resulls,

to infer the modification of stability properties due to surface permeability. Numerical calculations

are carried out for a self-similar fiat-plate boundary layer at. subsonic and low supersonic speeds.

Variations in mean suction velocity at, the perforated admittance surface can also induce recep-

tivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced

receptivity on the acoustic-wave orientation is significantly different from that of the receptivity

produced via mean suction variation. The admittance-induced receptivity is generally independent

of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves

for which the receptivity becomes weaker. However, this range of angles is precisely that for which

the suction-induced receptivity tends t.o be large. At. supersonic Mach numbers, lhe adlnittance-

induced receptivity to slow acoustic modes is relatively weaker than that in the case of the faro

acoustic modes. We also find that purely real values for the surface admittance tend to have a

destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The

limits on the validity of the linearized approximation are also assessed in one Sl)ecitic case.



1 Introduction

Reduction of aerodynamic drag through laminar flow control (LFC) usually involves the use of boundary-

layer suction through a perforated surface. Suction makes the boundary-layer profiles fuller, so that the

resulting boundary-layer flow is more stable than that in the absence of any suction [1]. For structural

reasons, the suction velocity distribution is not continuous in practice but is concentrated in the form

of discrete suction strips [2], [3], [4]. Strip suction has an effect on stability sinfilar to that of continuous

suction and, if optimized, can yield even higher reductions in the growth rates of the instability waves

[3].

The nonzero admittance of a perforated suction surface has no effect on the mean boundary-layer

flow if the mean pressure on both sides of the surface is assumed to be the same. But, by allowing

nonzero normal-velocity fluctuations at the surface, it can still influence the evolution of the instability

waves. The effect of surface admittance on boundary-layer stability was first recognized 1)y (_aponov

[5]; he made theoretical predictions for the surface admittance produced by a hypothetical design of

the suction system and went on to compute the resulting changes in the critical Reynolds number

Rcrit (below which no perturbations can amplify on a linear basis) and in the neutral stability curve

for small-amplitude perturbations. Although the knowledge of Rcrit and of the neutral stability curve

is quite useful, more significant information about the stability of a flow is usually provided by the

linear growth rates of the instability waves. Calculations of admittance-induced changes in the growth

rates of instability waves were carried out by Lekoudis [6] for the case of a realistic wing geometry.

Lekoudis found that significant stabilization of the boundary-layer flow was possible for one specific

porous-surface configuratiol_. However, we must note that he used the incompressible form of the

linear stability equations to examine the stability of the boundary layer, even though tile upstream

Mach number was as large as 0.82. Moreover, the surface admittance was calculated using a two-

dimensional model for the suction system, which consisted of slits rather than the perforations that

might be encountered in practice.

The calculations of both Gaponov and Lekoudis were based on the assumption of a locally uniform

surface admittance. A short-scale variation in the surface admittance distribution (which occurs on a

streamwise scale that is comparable to or shorter than the wavelength of the instability wave) will lead

to a scattering of those instability waves that are generated upstream of the region where this variation

takes place. Part of the scattered field will consist of the instability wave, so that the main effect of the



variationwill be to modify the amplitudeof the instability wavedownstreamof the variation. Zhang

and Kerschen [7] used an asymptotic model to study the scattering process near a perforated strip

of moderately large admittance in an otherwise impermeable surface. In particular, the scattering, of

energy from a TS wave to the strongly damped higher eigenmodes was studied using the triple deck

theory. The effect of arbitrary spatial variations in surface admittance was studied using a perturbation

expansion for small admittance values.

The other major consequence of short-scale variations in surface admittance is that such variations

can scatter free-stream acoustic waves into instability modes [8]. The excitation of instability waves

by environmental disturbances is known as the receptivity phase of the laminar-turbulent transition

process [9]. Receptivity of boundary-layer flows has been an active area of research during tile past

decade, mainly as the result of the theoretical breakthroughs made by Goldstein [10], l11]. For a review

of the early work on boundary-l_yer receptivity in low-speed boundary layers, the reader is referred to

Goldstein and Hultgren [12]. We note that in the case of boundary-layer flow over a perforated suction

surface, receptivity can be produced via variations in both the surface admittance and the mean suction

velocity [8], [13]. However, when the amplitudes of both variations are small, the associated receptivity

mechanisms are linear and can, therefore, be studied independently.

In this paper, we apply the ideas of refs. [8], [ll], and [14] to make quantitative predictions

for the receptivity produced by small-amplitude surface-admittance variations in a two-dimensional

compressible boundary layer. The results confirm the asymptotic prediction [15] that in ]ow-Mach-

number flows the magnitude of admittance-induced receptivity is independent of the orientation of the

incident acoustic wave. We also demonstrate how the above isotropic behavior is modified in the range

of transonic and supersonic Mach numbers. The related receptivity mechanism that involves variations

in mean suction velocity has been studied in a companion paper [16]. Herein, we compare the two

receptivity mechanisms and predict when one mechanism will dominate over the other one.

The Green's function that is computed in the context of admittance-induced receptivity is an

intrinsic property of the local mean profile. It is also shown to be relevant to the problem of instability-

wave scattering (or, for that matter, the stability of the boundary-layer flow over a uniformly permeable

surface). We utilize this connection to illustrate the influence of weak surface permeability (with or

without short-scale variations) on the evolution of an instability wave. In general, the make up of the

surface admittance can have a significant effect on the evolution process. Even though a purely resistive
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surfaceimpedanceleadsto a netenergylossat thesurface,its effectisusuallymoredestabilizingthan

that of a purelyreactivesurfaceimpedance.The changein the Reynolds-stressbehaviorbecauseof a

nonzerosurfaceadmittanceis alsodocumented.

2 Effect of Variations in Surface Admittance

2.1 Receptivity

First, consider the receptivity produced by the interaction between a small-amplitude time-harmonic

plane acoustic wave and a local region of nonzero surface admittance in an otherwise impermeable

surface. The schematic of the problem is shown in figure l, which also defines the relevant parameters

associated with the two-dimensional mean flow and the three-dimensional acoustic disturbance in the

free stream. Throughout this paper, all lengths are nondimensionalized by the local displacement

thickness (5* of the mean boundary layer; velocities, by the (local) mean free-stream speed U_; and

pressure, by p*_Ugo "2. All other thermodynanfic quantities are nondimensionalized by their mean free-

stream values, whereas the time t and the frequency co are scaled with respect to _f*/U_ and its inverse,

respectively. The free-stream Mach number U_/c*_c,o o in the local region is denoted by M.

The amplitude ea_ of the pressure fluctuation associated with the incident acoustic wave is assumed

to be sufficiently small, so that the unsteady motion can be treated as a linear perturbation of the

mean boundary-layer flow. The Reynolds number R6. =- U*_*/v(_ is typically large; therefore, the

linear stability of the local mean flow is adequately described by the quasi-parallel stability theory.

The local distribution of the surface admittance fl -_ _ Po_[ oo is assumed to have been specified in

the form _{X) = ezF(X), where we assume that _Z << 1 so that a regular perturbation analysis

may be carried out. (The LFC suction surfaces are weakly porous, with an open area ratio of 0(0.004)

[2J. Therefore, the above approximation is also relevant in practice.) The precise restriction on eZ

depends on the nature of the mean boundary-layer profile and the relative scaling of ,_ with respect

to Re*. For example, in the case of viscous-inviscid-interactive Tollimen-Schlichting (TS) modes (for

which co = 0(R_.1/4)), we require the stricter constraint _ << R6-.1/4 in order to permit a linearized

analysis of the problem. (Refer to the scalings in refs. [10], [11].) Note that the mean pressure is

assumed to be the same on both sides of the perforated skin (i.e., no mean suction is applied at the

surface).
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In view of the conditions stipulated above, the local unsteady motion can be expanded in the form

q=(u.v,w,p,T) = %c[q0(Y)exp(irt_X) + _l_ql(X,Y) + 0(_ 2) exp[i(/3_Z-wt)]. (1)

To the leading order, the unsteady motion is not affected by the change in surface admittance. There-

fore, tile zeroth-order solution q0(Y) corresponds to the acoustic-signature fieht within the boundary-

layer flow over an impermeable surface. In the range of frequencies that is relevant to the receptivity

problem, the acoustic wavelength is much smaller than the streamwise length scale of the mean bound-

ary layer. Therefore, qo(Y) satisfies the linear, parallel-flow disturbance equations [17], [18], which also

govern the stability of the boundary layer. Of course, q0(Y) is governed by a boundary-vahle problem,

unlike the eigenvalue problem that occurs in linear stability theory. The outer boundary conditions

on q0(}_) require that in the free-stream region q0(Y) should asymptote to a superposition of (i) the

incident wave and (ii) a specularly reflected wave whose amplitude is determined by the acoustic re-

fraction across the mean boundary layer and by the homogeneous boundary conditions relevant to an

impermeable surface.

The O(e_) surface admittance produces the scattered field q_(X,Y) which, again, satisfies the

parallel-flow disturbance equations after a Fourier transform (X _ a, ql _ /ll) is taken in the

streamwise direction. A complete statement of the disturbance equations for compressible shear ttows

can be found in refs. [17], [19] and will not be repeated here. The scattered field q_ is driven by the

O((,.,.et._ ) tluctuation in the normal velocity at the surface, which is produced by the O(e,,.) pressure

fluctuation. Thus, vl(c_,0) is given by

o) = (2a)

In general, the solution for ql would require a numerical sohltion for/tl(a, Y), which would be followed

by an integration in the complex c_ plane

ql(X, Y) - 1 /)o

to invert the Fourier transform. However, in a receptivity problem, interest is usually limited to

the part of ql that corresponds to just one eigensolution (or, at most, a few eigensolutions) of the

linear stability problem (viz., the instability wave). The fluctuation ql,i_ that is associated with

each instability mode of interest can be determined by isolating the residue contribution to the inverse

Fourier integral from the simple-pole type singularity in _h at the wave-number location given I)y the



corresponding(discrete)eigenvaluet_= (_ins(_,/3_c,R_.) [11], [14], [20]. Alternatively, the method of

adjoint eigenfunctions may be employed [21], [22]. In view of the driving condition (2a), q_, i,_s can be

written in the form

ql,i,_s(X,Y) = F((_w)A(cv,/3_c,R_*,O_)Ei,_s(Y)exp(i(_i,_X)H(X) (c_,_,= o_i,_ - _) (3)

where 0_ - [_r/2 - 0_¢[ is the polar angle of acoustic incidence and H(X) denotes the Heaviside

function of its argument. The vector Ei,_s(Y) of instability-wave eigenfunctions is assumed to have been

normalized in such a way that the eigenfunction that corresponds to the streamwise mass flux has a value

of unity at the Y location where this eigenfunction achieves its maximum magnitude. The parametric

dependence of Ei,,s on w,/3_, and R6* will be suppressed in this paper for brevity of notation. With the

above normalization for Ei,_s, the product C - (_/_(c_)A represents the local coupling coefficient ! that

measures the initial amplitude (i.e., the ampfitude at X = 0) of the perturbation in the streamwise mass

flux in the case of an instability wave that is produced by an incident acoustic wave of unit pressure

amplitude. The dependence of C on tile geometry of the local variation is characterized by the spectral

amplitude (_/_(c_) of the surface-admittance distribution because it is the Fourier component /_(c_,_)

that tunes tile acoustic wave number e_ to the instability wave number e_i,_. The efficiency function

A is independent of the geometry and depends only on tt_e frequency w and wave number /3_ of the

generated instability wave, the location R_. of the variation in surface admittance, and tile angle of

incidence 0_ of the incident wave. Physically, A corresponds to the normalized coupling coefficient

(27r)1/2C/(;3 for a point variation in surface admittance (i.e., for F(X) = 5(X)).

Because of (2a), the effect of acoustic-wave orientation 0_ on A can be separated out hy writing

A(_a,/3_, R6*, 0_) = A(_,/3_, R6.)C_(.3,/J:_, R6., 0_) (Sa)

where the surface pressure coefficient Cv ==_po(O)/pi(O) denotes the zeroth-order pressure fluctuation

at the surface, normalized by the pressure amplitude of the incident acoustic wave. Note that the

function f_ then corresponds to the efficiency function for the surface-vibrator problem of Gaster [23]

(or the Green's function computed by Tam[20] in a related but different context) that is driven by the

inhomogeneous boundary condition

_,(0) = -._(_), (Sb)

_This term was coined by Tam [20] and was used by Goldstein [ll] in his pioneering work.



instead of by (2). ComputationMly, A can be conveniently evaluated by first computing 5, and Cv

separately. In section 2.2, we show that the function A is also relevant to the problem of instability-

wave scattering by the local variation in surface admittance. For this problem, the results call be

obtained as a by-product of solving the receptivity problem.

2.2 Scattering of Instability Wave

Now, consider the problem where an instability wave generated upstream encounters the local region

of surface-admittance variation. Because this variation is small in alnI)litude, a perturbation approach

can be employed to examine its effect on the growth of the instability wave. Such an approach has

been previously used by a number of researchers to examine the effect of small-amplitude surface

disturbances on boundary-layer stability. See, for example, refs. [3], [7], [2,1]. Our intent here is

merely to demonstrate the connection between the receptivity problem examined in section 2.1 with

the t)roblem of stability modification and to use this connection to infer the effect of surface permeability

o_) the stability of a compressible boundary layer. Along the same lines as (1), the unsteady motio_) in

the present case can be expanded in the form

q =- (u,v, u,,p,T) = ei,zs [qo(}Z)exl)(i(ti,_s )() + C_ql(X, Y) + O(C_2)] exp[i(/3i,_Z - wt)]. (6)

where the zeroth-order term q0 now corresponds to a continuation of the upstream wave to the local

region in the absence of any variation in the surface admittance. Therefore, if we identi_' q,,_ with the

local amplitude of the streamwise mass flux associated with the upstream wave (which is the quantity

that is measured by a hot-wire anemometer), then qo(Y) represents the set of normalized eigenfimctions

Ei,,_(Y) for the instability wave over an impermeable surface. The interaction of q0(Y) with the local

region of nonzero admittance produces the scattered field ql(X,Y). From the discussion related to

(2), we may conclude that the Fourier transform /t1(c_, Y) of the scattered field will satisfy the linear

stability equations, subject to the inhomogeneous boundary condition

0) = - -..)

The part of ql that corresponds to the instability mode can now be expressed in the form

ql,i_ = S(w, flin_, R6*)Ei,_(Y)exp(ic_i,_X) H(X) (7a)



where the scaled scattering coefficient S is given in terms of the efficiency function A, which was

obtained in the context of the receptivity problem, by

where

s = P(0)As(_,_n_, R6.) (7b)

A_(w,/_in_,Rs*) = A(_,/3i,_, Rs*)pi,_(O) (7b)

analogous to (5a). Let us comment on the similarity between the receptivity and the scattering prob-

]eros. Effectively, the scattering region acts as a secondary source of receptivity. The net amplitude of

the instability wave in the region downstream of the surface-admittance variation (i.e., the amplitude of

the transmitted instability wave) is determined by the interference between the primary (incident) and

the secondary (produced by backscattering) waves. Within the linear limit used here, only the mean

component (i.e., the Fourier component with zero wave number) of the local admittance distribution

can t)roduce a backscattering of the instability wave into or out of itself. Therefore, the correction to

the instability-wave amplitude is determined solely by the (complex) Fourier amplitude fl(0). Note

that the secondary wave is not a reflected wave, because any instability that is produced locally will

appear only on the downstream side of the scattering region.

In the limit of F(X) = Fo (= Constant), the scattered field consists purely of the instability wave

because the surface-admittance distribution only has the mean component c_ = 0. However, note that

the above geometry corresponds to a locally uniform distribution of the type that was examined by

Gaponov [5] and by Lekoudis [6]. Therefore, the evolution of an instability wave in this case could also

have been predicted by considering the Wentzel-Kramers-Brillouin (WKB) expansion for the eigenmode

solution

qi,_ = [Ei,_s,o(Y)+ezEi,_s,,(Y)+..] exp[iOi,_s,o(X)+_iOi,_s,,(X)+..] (8a)

d Oin_,, 0 d Oin_, 1
where ain_,O =- dX is the eigenvMue for an impermeable surface and OZins, 1 _ d---"-X--corresponds

to the eigenvalne correction that accounts for the weak permeability of the perforated surface under

consideration. The scattering coefficient S = FoAs is then related to the eigenvMue correction ai,_,l

by

S = i_n_,l (8b)

Because of the above connection with the eigenvalue problem for a uniformly permeable surface (which

can be solved quite easily even when the surface admittance is not small enough to permit linearization),



wearealsoin a positionto assessthelimit on the valueof eZ below which the linearized theory in this

paper can be expected to be accurate in predicting the receptivity and/or instability-wave scattering

in the case of localized surface-admittance distributions.

We also note that when the short-scale variations in the surface-admittance distribution are not

localized but are spread out over a large number of instability wavelengths, the results (3) and (7) cab

be conveniently generalized by accounting for the slow variation in the e_ciency function A (or :_), in

the wave number ai,_ of the instability wave, and in tile amplitude and wave numbers of the acoustic

wave. (See refs. [25] and [26].) For a fiat-plate boundary layer, where the acoustic-wave properties

remain uniform, (3) can be generalized by writing

q,,i,_ = C(X)Ei,_.,(Y)exp[i6),_(X)] {ga)

where

1 /xC - (2_r)_/_ FA exp[-iOi,,_(X_)]dX_. (9b)

Closed-form expressions for (9b) can be obtained for certain special geometries; the reader is referred

to refs. [26] and [27] for a description of those solutions. For the scattering problem, (9b) will be

replaced by

C - (2_r),/2 r As dX_. (9c)

3 Results

3.1 Receptivity Prediction

3.1.1 Effect of Maeh number

The variation of the coupling coefficient in the range of subsonic Mach numbers was examined in the case

of the self-similar adiabatic zero-pressure-gradient boundary layer. To simulate wind-tunnel conditions,

the stagnation temperature of the flow was kept constant at 311 K as M was varied. The local

admittance distribution was chosen to be that of a single porous strip with a uniform admittance level

across its width. The location of the strip was held fixed at R = 955 (where R 2 denotes the Reynolds

number Rl. based on the distance g* from the leading edge to the region of receptivity); we focused on

the excitation of the two-dimensional instability wave that begins to amplify just downstream of the

strip location. In other words, the frequency of the acoustic wave was chosen to be that corresponding

to the lower branch of the neutral stability curve (i.e., a; = Wlb). The width of the porous strip was



chosento beequalto _'/c_ to maximizethe valueof thegeometryfactor /_(_,_) in (3). To obtain a

representative magnitude of the coupling coefficient_ the angle of incidence of the free-stream acoustic

wave was assumed to be fixed at 0_c = 45 ° as M was varied. We found that the magnitude of the

normalized coupling coefficient FA does not vary significantly across the entire range of subsonic Mach

numbers; it changes from a value of 31 at M _ 0 to 38 as M --, 1. Because the acoustic pressure was

-* U* 2normalized by p_(_ to obtain tile above result, we conclude that tile (nondiinensional) amplitude

of the generated instability wave will increase roughly as 1/M 2 as M _ 0 if the sound pressure level

(SPL) is kept fixed at a given decibel level as the Mach number is decreased.

3.1.2 Effect of 0_

As indicated by (5a), the variation of the efficiency flmction IAI with the acoustic-wave orientation is

entirely characterized by the dependence of the surface-pressure coefficient Cp on 0_. In figure 2, we

have plotted the magnitude of Cp in the case described in the previous paragraph as a function of 0_

at a few selected Mach numbers. When the Mach number is small, ]Cpl (and, hence, the magnitude of

the coupling coefficient) is independent of the acoustic-wave orientation. Because the boundary-layer

thickness is uniformly small as compared with the wavelength of an acoustic wave, the reflected pressure

wave is ahnost in phase with the incident wave; therefore, ICp] _ 2.0 at all values of Oat when M is small.

This isotropic property of admittance-induced receptivity is also predicted in ref. [15] on the basis of an

asymptotic model based on the triple-deck theory [11], [14], [28]. However, the change in the It:pl curve

as M increases beyond 0.5 is even more interesting. The refraction of the acoustic waves across the

mean boundary layer introduces a nonzero phase difference between the surface-pressure fluctuations

associated with the incident and the reflected acoustic waves. Consequently, the magnitude of Cp

decreases sharply as 0_ is increased above some critical value; this value lies in the range of acoustic

waves that are incident from the upstream direction.

In the range of supersonic Mach numbers (M > 1), the acoustic modes at any fixed frequency

become two disjointed sets of modes, namely the fast mode that is analogous to acoustic waves in

subsonic flows and the slow mode that has a narrower range of possible orientations and, moreover, has

a critical layer within the mean boundary-layer region. Overall, the slow-mode waves correspond to

smaller values of ICy[ and, hence, are expected to produce lower receptivity than the fast-mode acoustic

disturbances for a given SPL. At a given set of values for M, R, and 0_, the ICpl values for the slow
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acoustic mode decrease with an increase in the frequency parameter w (i.e., as the acoustic wavelength

shortens with respect to the thickness of the mean boundary layer). Moreover, for a given ,_ in the

vicinity of the lower branch frequency, the ]Cpl value increases as the Math number increases.

3.1.3 Comparison with Suction-Induced Receptivity

All interesting comparison is made between the coupling coefficients found above for the admittance-

induced receptivity and those obtained in ref. [16] for the related mechanism of receptivity caused by

an identical variation in tile mean suction velocity. First, the 0_ dependence of the A function in figure,

2 is completely different from that of the efficiency function A (s) for the suction-induced receptivily.

The latter function has a peak in the range of upstream-traveling incident waves (a-/2 < 0,,_ < 7r), and

the magnitude of this peak increases as the Math number increases. In contrast, the IAI values for

surface-admittance-induced receptivity tend to decrease in the range of 0_ where the peak of IA(_)I

occurs. The decrease in IA] is particularly prominent at the higher values of M. If we compare the

maxima of the two efficiency functions at a given Mach number, then to produce the same magnitude

of coupling coefficient in both cases, the ratio _ _ must be approximately 12 at both M = 0.1 and
V,_lU_

M = 0.9. The resistive impedance of a perforated surface is very sensitive to the radius of the pores,

and the reactive impedance is deternfined mostly by the specific configuration of the ducting system

underneath the surface. Therefore, we will not draw any conclusions in regard to which receptivity

mechanism is likely to dominate in practice. However, the suction velocities required to stabilize a

boundary-layer flow are very small (Vg/Ugo = O(10 -3) to O(10-4)); hence, the above ratios could

easily be realized (and perhaps exceeded) in a practical LFC configuration.

3.1.4 Effect of Three-Dimensional Acoustic Waves

To understand the effect of the three dimensionality of the acoustic wave on Cp, we have plotted ]Cpl in

figure 3 as a function of the azimuthal orientation ¢_ = arctan(/3_/a_) at a fixed w (which is the same

as that in figure 2) and a fixed 0_. Figure 3 shows that the larger the polar angle of acoustic incidence

0p_, the more sensitive the value of I5'p} to the azimuthal orientation 4)a_ in the range ¢_ > _r/2.

The spanwise wave number of the generated instability wave changes with (;b_. However, because the

variation in ¢i,_ in this case is relatively small (it varies from [0 °, 1.5 °) at 0_ = 5° to [0o,33o) at

f The parameter e_/M corresponds to the nondimensional amplit,_de of fl*p*c* .... which is the more conventional
nondimensionalization for specifying the surface admittance.
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0_c = 85°), the A values do not change significantly across the entire range of O_. Therefore, the IC, J

variation in figure 3 is also roughly analogous to the corresponding variation in the [A! function.

3.2 Instability-wave Scattering and Stability Modification

Next, we consider the effect of admittance variation ell the scattering of instability waves. The surface

admittance /3 is a complex quantity. Therefore, if we vary the argument of i'_ while its magnitude is

kept fixed, then the interference process between the primary and the secondary waves is modified.

This modification will in turn change the downstream amplitude of the instability wave. Equations (6)

and (7) show that for a given 1/31, the downstream amplitude of the instal)ility wave will 1)e maxii1_um

(ill the linear limit) when arg(/7,(0)) = -arg(A_). This maximum aml)litude is 1 + (2if"(O)A_i times

larger than the amplitude over an impermeable surface at the same location. The variation of ]A_] in

the _ R6* space was illustrated in [13] in the context of admittance-induced receptivity in low-Math-

number flows. (See figures 6a through 6c of ref. [13].) We found that for the two-dimensional flat-plate

boundary layer, arg(A_) is usually positive and, moreover, is smaller than 7r/4. This implies that a

more destabirizing effect is produced by surface impedances that are resistance dominated (/_ nearly

real, positive) than by surface impedances that are reactance dominated (/3 nearly imaginary).

Recall from (7) and (8) that the problems of admittance-induced receptivity and admittance-

induced instability-wave scattering are mathematically identical to within one scaring factor. Moreover

when F(X) = Fo (=Constant), the latter problem reduces to computing the eigenvalue correction c_i,_,

that accounts for the weak surface permeability in the case of a quasi-uniform admittance distribution.

In figure 4, we have plotted the scaled growth-rate correction -Im(ai,_, 1)/Fo as a function of R for an

instability wave that corresponds to a nondimensional frequency parameter of f =_ w/R6* = 25E - 6.

(This frequency is close to the value that is deemed to produce transition in the boundary layer over

an impermeable surface according to the e 9 criterion [17].) The Mach nuulber is taken to be equal to

0.02. When the surface is impermeable, the lower and upper branches of the neutral stability curve

under the above conditions correspond to R ,,_ 910 and R ,_ 1975, respectively. For comparison, the

predictions for Im(ai,_ - cq,ts, O)/¢_Fo that were obtained from the numerical solution of the nonlinear

eigenvalue problem (for sufficiently large values of ¢_) with nonzero (and reaD) /3 are also shown in

figure 4. We observe that the linearized result obtained from the perturbation expansion (Sa) is useful

for surface-admittance values that correspond to approximately (_F0 < 0.10. The deviation from the

linear prediction is relatively larger at the lower Reynolds numbers, i.e., at positions upstream of the
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lowerbranch. Evenbeforethelinear approximationlosesits validity, the predictedgrowth ratesbe-

comesubstantiallylargerthan thoseoveran impermeablesurface,sothat ignoringthenonzerosurface

admittancein thosecases would lead to an overprediction of the transition Reynolds number according

to the e 9 criterion for transition prediction [17]. The estimates obtained in ref. [29] suggest that the

values of surface admittance in a typical LFC application are likely to be well within the linear range.

But experimental measurements of the surface admittance must be carried out so that the effect of

surface permeability on the N factor may be assessed more accurately.

The effect of a nonzero surface admittance on the flow stability appears to be manifested through a

rapid increase with Y in the magnitude of the Reynolds stress v near the surface (where the mean shear

is maximum, so that the most energy can be extracted from the mean flow by a fixed increment in

Reynolds stress). Figure 5 shows the Reynolds-stress profile for the case where the surface admittance

is purely real. For /3 =_ 0, the increase in iv] with Y is weak, because Irl is proportional to y3 as

Y _ 0; in contrast, a linear increase with Y is obtained when /3 # 0. Away from the surface, the

Rey_mlds-stress distribution tends to be qualitatively similar in both cases.

Before we conclude, we will conlment on the qualitative changes that may be expected when the

surface-admittance becomes moderately large (so that the perturbation expansion (6) is no longer

valid). An important class of flows in this respect corresponds to viscous-inviscid interactive distur-

bances in two-dimensional supersonic boundary layers, for which the linear theory ceases to be valid

when (l_ = O(R[, _/4) as previously mentioned in section 2. The first subclass of disturbance motions

under the interactive label is that of unsteady supersonic disturbances (i.e., disturbance modes that are

inclined at angles of smaller than arccos(1/M) with respect to the mean-flow direction). The triple-deck

theory (which is a large-Reynolds-number asymptotic approximation to the Navier-Stokes equations)

predicts that supersonic eigenmodes are completely stable when/3 = 0 (i.e., are always damped). How-

ever, we will be interested to determine whether amplifying supersonic instabilities can exist when the

admittance is allowed to be nonzero. Such an investigation is important because the values of surface

admittance that are required to produce an O(1) impact on the stability properties are asymptotically

small. The second subclass of disturbance motions corresponds to steady disturbances that produce

an upstream influence in supersonic boundary layers, such as the interaction of a boundary layer with

an incident shock [30]. Passive surface porosity has been suggested in the literature as a technique for

mean-flow modification over aerodynamic components. In this context, the nonzero admittance values

13



can have an especially significant impact on the extent of the upstream influence in the above subclass

of problems. In particular, preliminary calculations by the author indicate that the decay rate of the

disturbances that produce an upstream influence increases rapidly with the (real) amplitude of the

surface-admittance distribution. This increase will tend to inhibit the upstream interaction.
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